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Abstract. The classical distributed knowledge is based on the tradi-
tional understanding of ’knowing that something’, but there may be
some di↵erences considering other kind of ’knowing’. Apart form ’know-
ing that’, the concept of ’knowing whether’, ’knowing how’ and ’knowing
why’ have been put forward for some time and relevant work is ongoing.
In this paper, we try to study the distributed knowledge on ’knowing
whether’, expecting to find some di↵erences compared with the classical
one.
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1 Introduction

The concept of distributed knowledge was originally put forward in the field
of computer science when discussing the distributed system. Generally, the dis-
tributed knowledge is characterized by intersection of information states. Surely
the information of di↵erent agents is presented in the way of ’knowing that’, clas-
sically. However, ’knowing whether’ is something new put forward these years by
Prof. Wang. We’ve found there are some special features which ’knowing that’
does not have. Thus, this inspires us to consider the combination of these two
concept. That means talking about the distributed knowledge in a new view-
point.

1.1 Classical distributed knowledge

Given a set of agents A, and a set of propositional variable P , the language L

D

of epistemic logic with distributed knowledge is given by following definition:

� := p | �^ | ¬� |Ki� |D�

where p2P , i2A.

Definition 1. The definitions of satisfaction of sentences of L in a model M
are as usual for the atomic formulas and the Boolean formulas. Now we just
consider the nontrivial cases:

M,w|=Ki� iff for all v such that w!iv : M, v|=� (1)

M,w|=D� iff for all v such that w!iv for each i2A : M, v|=� (2)



As we have seen, the semantic definition of theKi� is just like the classical modal
operator. And the semantic of the D� is the intersection of the information from
every agent i2A.

Based on theKi�, classical logic about distributed knowledge gave its Axioms
System as follows:

Definition 2. Axiom System:

TAUT and all instances of tautologies (3)

Ki�^Ki(�! )!Ki (4)

Ki�$D� when A = {i} (5)

Ki�!D� (6)

D(�! )^D�!D (7)

MP : �,�!  / (8)

NEC : from � infer Ki� (9)

Having introduced the traditional definition of the distributed knowledge, we
have to clarify another part of our work, namely epistemic logic about the ’know-
ing whether’.

1.2 Knowing whether

The work on the ’knowing whether’ is based on the concept of noncontingency,
which means it is necessarily true or it is necessarily false. Intuitively, someone
knows whether � means he definitely knows that � is true or he definitely knows
� is false. This concept is often su�cient to express interesting propositions
without using the more expressive ’knowing that’ construction. Firstly, we should
introduce the semantics of the noncontingency operator:

Definition 3. The definition of the satisfaction of the sentences in form of 4i�,
where 4i� means agent i knows whether � intuitively.

M, s |=4i� iff for all t1, t2 such that s!it1, s!it2, : (M, t1 |=�,M, t2 |=�)
(10)

More clearly, M, s |=4i� iff M, s |=Ki� or M, s|=Ki¬�

Actually it is quite di↵erent from ’knowing that’. Comparing the axioms of both
systems, K-axiom is not satisfied in NCL(the axiom system about ’knowing
whether’) in which two new fundamental axioms replace the role of K-axiom
played in traditional epistemic logic.

Definition 4. Axiom System for NCL:

TAUT and all instances of tautologies

4i� $ 4i¬� (11)



(4Con) 4i(�! �) ^ 4i(¬�! �) ! 4i� (12)

(4Dis) 4i� ! 4i(�!  ) _ 4i(¬�! �) (13)

MP : �,�!  / 

NEC : from � infer 4i� (14)

RE4 : from �$  infer 4i�$4i (15)

In NCL, (4Con) and (4Dis) are the fundamental axioms in this proof system.
Moreover, here is no SUB-rule. Since the proof of SUB is in use of K-axiom which
is lacking in NCL, SUB can’t be given directly. But adding the rule RE4, SUB
is admissible in NCL.

As we have mentioned above, distributed knowledge is based on the most
fundamental epistemic logic. However, NCL is not a normal modal logic, which
forces us to reconstruct the system about distributed knowledge on ’knowing
whether’.

2 Syntax and Semantics of DNCL

In this section, we first define a logical language including noncontingency and
distribution operators.

Definition 5. Let a set P of propositional variables and a finite set A of agents
i. The logical language of DNCL is defined as:

� ::= > | p | ¬� | �^� | 4i� | D4
� (16)

We use the operator D

4 to refer to the distributed knowledge on ’knowing
whether’ which di↵ers from the classical one, D.

Given the language, we will define the model and semantics in a standard way.

2.1 Models and semantics

Before we give the definition of semantics, we should clarify the models we would
use in following part.

Definition 6. A model is triple M = hS, {!i|i2A}, V i where S is a nonempty
set of possible worlds, !i is a binary relation over S for each i2A, and V is a
valuation function assigning a set of worlds V (p)✓ S to each p2P . Given a world
s2S, the pair (M,s) is a pointed model. A frame is a pair F = hS, {!i|i2A}i,
just equals to the model without a valuation.

Now we will give the first important definition, semantics.



Definition 7. Given a model M = hS, {!i|i2A}, V i, the semantics of DNCL
is defined as follows:

M, s |=> always

M, s |=p iff s2V (p)

M, s |=¬� iff not M, s |=�
M, s |=4i� iff for all t1, t2 such that s!it1, s!it2, : (M, t1 |=�,M, t2 |=�)
M, s |=D

4
� iff for all t such that s!it for each i, it holds thatM, t |=�

or for all t such that s!it for each i, it holds that M, t |=¬� (17)

Considering the satisfaction condition of D4
�, it also describes the intersection

of information from all agents. But once each agent has the same value of �,
we can conclude that ’knowing whether �’ is the distributed knowledge over the
group A.

If we realize the features of ’knowing whether’ and the new distributed knowl-
edge, we will construct the axiom system in a new way. And the main idea
depends on NCL.

2.2 Axiomatization

In this section we give a complete Hilbert-style proof system for the logic DNCL
on the class of all frames.

Definition 8. The proof system DNCL consists of the following axiom schemas
and inference rules:

TAUT and all instances of tautologies

4i� $ 4i¬�
(4Con) 4i(�! �) ^ 4i(¬�! �) ! 4i�

(4Dis) 4i� ! 4i(�!  ) _ 4i(¬�! �)

4i� $ D

4
� when A = {i} (18)

4i� ! D

4
� (19)

(D4
Con) D4(�! �) ^ D

4(¬�! �) ! D

4
� (20)

(D4
Dis) D4

� ! D

4(�!  ) _ D

4(¬�! �) (21)

MP : �,�!  / 

NEC : from � infer 4i�

RE4 : from �$  infer 4i�$4i 

RED

4 : from �$  infer D

4
�$D

4
 (22)

A derivation of DNCL is a finite sequence of DNCL-formulas such that each
formulas is either the instaniation of an axiom or the result of applying an
inference rule to prior formulas in the sequence. A formula is �2Th(DNCL) is
called provable, or a theorem, notation `�, if it occurs in a derivation of DNCL.



We can see that in this axiom system, it remains the basic axioms and rules
from NCL. Besides, we add some new axioms with the operator D4 while in the
same form with (4Con), (4Dis) and RE4, namely (D4

Con), (D4
Dis) and

RED

4.
Please pay much attention to the axiom(19) because it constructs a bridge

between the operator 4 and D

4, which is quite useful in the proof of Complete-
ness. Then we should show the soundness of DNCL.

Proposition 1. The proof system DNCL is sound with respect to the class of
all frames.

Proof: Actually we just need to prove the soundness of the axioms(18), (19),
(20), (21) and the rule(22). Because other axioms and rules have been proved
in Prof.Wang’s paper on ’knowing whether’. Among these axioms, the proof
of (D4

Con), (D4
Dis) and RED

4 are just similar to the proof of (4Con),
(4Dis) and RE4. We just consider the case where s!it for each i2A instead
of s!it for some i2A.

Obviously, (18) sound. Because if there is only one agent in A, the distributed
knowledge is just same to the single agent’s knowledge. The intersection of in-
formation is just equals to the set of information of the agent i.

As for axiom(19), let M,S|=4i�, if and only if for all t with s!it, such
that M, t|=� or for all t with s!it, such that M, t|=¬�. If there is no u with
s!iu for each i2A, then M,S|=D

4
� holds trivially. If there is u with s!iu for

each i2A, then there must be M,u|=� or M,u|=¬� since s!iu. Thus, we have
M,S|=D

4
�.

Therefore we have proved the soundness of DNCL.

3 Completeness to the Class of K-frames

In this section, we are going to prove the completeness of DNCL. Generally,
the proof of completeness is complicated and logicians have developed a whole
processes of the proof on completeness of modal logic. The most standard method
is to use the ’canonical model’. However the classical way can not be taken
immediately due to the characteristics of the operator D4.

Actually we will take a method put forward by Fagin et al. (1992) given
for DS5 which is e↵ective in dealing with the problems arose by the operator.
It’s main idea is introducing a new ’kit’, named ’pseudo-models’. Briefly, we
will show that DNCL is ’pseudo-satisfied’ in ’pseudo-model’. And then we can
transform the pseudo-model into a real one to prove that DNCL can also be
satisfied in the real model in help with the ’pseudo-satisfied’.

Now, I will show the proof in detailed.

3.1 Construct the pseudo-model

The main idea of the pseudo-model is just regard the operator D

4 as a new
common operator, same to 4i. So we use a new relation !D to refer to the
accessibility in the pseudo-model.



Definition 9. Let M⇤ = hS, {!⇤
i |i2A}, !D, V i is a pseudo-model, in which

S = {s|s is a maximal set of DNCL}

s1!⇤
i s2 iff there exists � such that

1. ¬4i�2s1 and

2. for all � : 4i�^4i(�! �)2s1, implies �2s2
s1!Ds2 iff there exists � such that

1. ¬D4
�2s1 and

2. for all � : D

4
�^D4(�! �)2s1, implies �2s2

V (p) = {s2S|p2s}
The new satisfaction is ’pseudo-satisfy’: M⇤

, s|=⇤
� is just as ordinary in Kripke

models except that M⇤
, s|=⇤

D

4
� i↵ for all t with s!Dt, M⇤

, t|=⇤
� or M⇤

, t|=⇤¬�.

Clearly,!D is just same to the!⇤
i and from the definition of pseudo-satisfaction,

D

4 is same to !i. In a standard way, we would prove the truth lemma in the
following.

Lemma 1. Truth Lemma

⇤: M⇤
, s|=⇤

� i↵ �2s for all �2LD

Proof: Induction on �. The nontrivial cases are when � = 4i and when
� = D

4
 . But we have regarded D

4 as 4i, so we can just prove the second
case in the absolutely same way as the first case. Since Prof.Wang has proved it
in his paper, we just need to refer to that proof.

3.2 A tree-like model

We have proved that DNCL can be satisfied in M

⇤. Before we transform it into
a real model, we should firstly change it into a tree-like model which would make
it convenient to obtain the real model from it.

The method of constructing a tree-like model put forward by Fagin is proper
for any model, of course for the pseudo-model. l will sketch the method here:

The approach is to create the states of the tree-like model M⇤
T from the

original model M⇤. The states in M

⇤
T is at various ’level’. The first level T1

contains precisely S, the set of states of M⇤. Assume inductively that we have
defined the set Tk of states at level k. Then, for each s2S, each v2Tk, and each
agent i, we define a new, distinct state zs,v,i. We may refer to zs,v,i as an i-child
of v, and to v as the parent of zs,v,i. Let T = [{Tk|k�1}. Define g:T!S by
letting g(s)=s if s2T1, and g(zs,v,i)=s for zs,v,i2Tk where k�2. Intuitively, we
shall construct M

⇤
T with state space T such that the set of formulas � on s2T

is same to that on the state g(s)2S.
And then we define the relations in M

⇤
T . Let s!T

i t i↵ t is an i-child of s and
g(s)!⇤

i g(t). Define V

T (s) = V (g(s)).
Now we obtain the tree-like model M

⇤
T = hT, {!T

i |i2A}, V T i from the
pseudo-model M⇤. We will show that the set of formulas � on s2T is same
to that on the state g(s)2S.



Proposition 2. M

⇤
T , s|=

⇤
 i↵ M

⇤
, g(s)|=⇤

 

Proof: Induction on  . Considering that the case when  = 4i� is same to
the case when  = D

4
�. So we can just prove the nontrivial case when  = 4i�.

( ) Assume first that M

⇤
T , s|=

⇤
not 4i�. Thus there are t1 and t2 with

s!T
i t1 and s!T

i t2, such that M

⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�. According to the
definition of !T

i , there are g(s)!⇤
i g(t1) and g(s)!⇤

i g(t2). By inductive hypothe-
sis(abbreviate it to IH in the followings), M⇤

, g(t1)|=⇤
� and M

⇤
, g(t2)|=⇤¬�. So

we get M⇤
, g(s) 6|=⇤4i�

(!) Assume that M⇤
, g(s)|=⇤

not4i�. Thus there are w1 and w2 with g(s)!⇤
iw1

and g(s)!⇤
iw2, such that M⇤

, w1|=⇤
� and M

⇤
, w2|=⇤¬�. According to the defi-

nition of the state space T, there must be zw1,s,i and zw2,s,i with s!T
i zw1,s,i and

s!T
i zw2,s,i. By IH, M

⇤
T , zw1,s,i|=

⇤
� and M

⇤
T , zw2,s,i|=

⇤¬�. So we get M⇤
T , s 6|=

⇤
n4i�.

We have proved it as desired.

We have constructed a tree-like model from the pseudo-model and actually they
have the same set of formulas � on corresponding states. However, M⇤

T is also
a pseudo-model. Thus, the remaining work we have to do is transforming the
tree-like model into a real model.

3.3 Construct the real model

The key process to construct the real model is to reconstruct the relations in the
tree-like model M⇤

T . And the state space and the valuation inherited from M

⇤
T

directly.

Definition 10. Let M = hT, {!i|i2A}, V T i. We set w!+
i v if w!Dv in M

⇤
T

for each i2A. Let !i =!T
i [!

+
i for any i2A.

Because M and M

⇤
T has the same state space T, we should show that the

set of formulas � satisfied in M is exactly the set of formulas pseudo-satisfied in
M

⇤
T .

Proposition 3. For any  2�, there is M, s|= i↵ M

⇤
T , s|=

⇤
 .

Proof: Induction on  . If  is a propositional variable or Boolean formula,
it’s immediate. We just consider the nontrivial case.

Case 1: If  = 4i�:
(!) Assume M

⇤
T , s|=

⇤
not 4i�. Thus, there are t1 and t2 with s!T

i t1 and
s!T

i t2, such that M⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�. By IH, M, t1|=� and M, t2|=¬�,
since {!T

i }✓{!i|i2A}. So we get M, s|=not 4i�.
( ) Assume M⇤

T , s|=
⇤4i�, if and only if for all t with s!T

i t,such that M⇤
T , t|=

⇤
�

or for all t with s!T
i t,such that M

⇤
T , t|=

⇤¬�. To show M, s|=4i�, we must
show for all t with s!it such that M, t|=� or for all t with s!it such that
M, t|=¬�. We assume here that s!T

i t such that M

⇤
T , t|=

⇤
�. Here are 2 cases

when s!it = s!T
i t or s!iu = s!+

i u. If s!it = s!T
i t, M

⇤
T , t|=

⇤
�. By IH,

M, t|=�. If s!iu = s!+
i u, that means s!Du in M

⇤
T . Since M

⇤
T , s|=

⇤4i�, ac-
cording to the axiom(4i�!D

4
�), M

⇤
T , s|=

⇤
D

4
�. Now we want to show that

M

⇤
T , u|=

⇤
�. Because s!Du in M

⇤
T , according to definition of!D, we know there



exists � such that ¬D4
�2s. We prove by contradiction. Assume M

⇤
T , u|=

⇤¬�,
by truth lemma, ¬�2u. Since �2t, we have �!�2t for all t with s!⇤

i t. So we
have 4i(�!�)2s. By Axiom, D

4(�!�)2s. Similarly, since ¬�2u, we have
�!¬�2u for all u with s!Du. So we have D

4(�!¬�)2s. By Axiom(D4
con),

D

4(¬�!¬�)^D4(�!¬�)!D

4¬�. So we have D4¬�2s. That means D4
�2s,

which contradicts to ¬D4
�2s. So M

⇤
T , u|=

⇤
�. By IH, M,u|=�. So for all t with

s!it, there is M, t|=�
Assume for all t s!T

i t such that M⇤
T , t|=¬� is similar. So for all t with s!it

, there is M, t|=� or for all t with s!it , there is M, t|=¬�.
Therefore we get M, s|=4i�.
Case 2: If  = D

4
�:

(!) Assume M

⇤
T , s|=

⇤
not D

4
�. Thus, there are t1 and t2 with s!Dt1 and

s!Dt2, such that M⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�. By IH, M, t1|=� and M, t2|=¬�,
since s!Dt1 and s!Dt2, according to the definition of {!+

i }, there are s!it1

and s!it2 for all i2A. So we get M, s 6|=D

4
�.

( ) Assume M, s 6|=D

4
�. Thus, there are t1 and t2 with s!it1 and s!it2

for each i2A, such that M, t1|=� and M, t2|=¬�. According to the definition of
{!i} and M

⇤
T is tree-like, we get to know that s!Dt1 and s!Dt2 in M

⇤
T . By

IH, there are M

⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�.
So we have M

⇤
T , s 6|=

⇤
D

4
�.

Now we have proved the proposition we want.

Theorem 1. The logic DNCL is complete with respect to the class K of all
frames.

4 Axiomatization: Extension

We have proved the completeness to the class of K-frames above all. As we all
know that generally, the epistemic logic on S5-frames would properly describe
the knowledge of di↵erent agents. So we have to extend our axiom system, say
DNCL, to DNCLS5.

As the general way, we add some axioms to DNCL. Because our concept
of distributed knowledge is based on ’knowing whether’, so we should add the
axioms from NCLS5 and construct some new axioms with the operator D

4 in
the same form of these new adding axioms from NCLS5.

Definition 11. DNCLS5 is obtained by adding following axioms:

(4T ) 4i�^4i(�! )^�!4i (23)

(w45) ¬4i !4i¬4i� (24)

(DT ) D4
�^D4(�! )^�!D

4
 (25)

(wD5) ¬D4
 !D

4¬D4
� (26)



The proof of the soundness of (DT) and (wD5) is similar to that of (4T ) and
(w45) which have been given by Prof.Wang in his former work.

Here is something we should pay attention that the formula(44), say4i�!4i4i�,
can be implied by DNCLS5, which is useful in following proof. In the next sec-
tion, we shall prove the completeness of DNCLS5.

5 Completeness to the Class of S5-frames

Having the experience in former proof of completeness to K, we can just walk
along the process to give the the proof of completeness of DNCLS5.

5.1 A S5-pseudo-model

Similar to the way to construction above, we can construct the new S5-pseudo-
model M⇤ just through adjusting the definition of relations, to let it be a equiv-
alence relation.

Definition 12. We use the former symbols. Let a S5-pseudo-model M⇤ = hS, {!⇤
i |i2A}, !D, V i,

where:

s1!⇤
i s2 is the reflexive closure of the relations defined in DNCL.

s1!Ds2 is the reflexive closure of the relations defined in DNCL.

And the pseudo-satisfaction is defined as above.

And the truthlemma

⇤ is the same in proof of DNCL.
But actually we just construct the pseudo-model here to be a reflexive model.

We should show that the {!⇤
i |i2A} is Euclidean. Since in a pseudo-model, we

regardD

4 as4i, so the proof is absolutely same to the proof given by Prof.Wang
in his paper.

5.2 A S5-tree-like pseudo-model

The method to change M

⇤ into the tree-like model M⇤
T is almost same to it

mentioned above. But there still be something di↵erent here, that is also about
the relations.

Definition 13. We let M⇤
T = hT, {!T

i |i2A}, V T i be the tree-like pseudo-model
again, where {!T

i |i2A} is the reflexive, symmetric and transitive closure of the
relations we defined above in DNCL. Here much notice we should must put in.
We firstly transform the pseudo-model into the tree-like pseudo-model named
M

⇤
t . Then we do the reflexive closure of M⇤

t which forms a new model M⇤
tr =<

T,R

⇤
tr, V

T
>. Then we do the symmetric closure of M⇤

tr which forms the model
M

⇤
trs =< T,R

⇤
trs, V

T
>. At the last, we do the transitive closure of M⇤

trs and
make it into M

⇤
T . The state space and the valuation are the same as above.

It’s easy to see that this tree-like pseudo-model M⇤
T is a S5-model.



And the proof of M⇤
T , s|=

⇤
 i↵ M

⇤
, g(s)|=⇤

 is di↵erent from the above one.
Because we have added more relations in the tree-like model.

Proposition 4. M

⇤
T , s|=

⇤
 i↵ M

⇤
, g(s)|=⇤

 

proof: If  is a propositional variable, this follows from the fact that V T (s) =
V (g(s)). The case where  is a Boolean formula is immediate. We now just
consider the nontrivial case when  = 4i�.(The case when  = D

4
� is the

same)
( )Assume first that M⇤

T , s 6|=
⇤4i�. Thus there are t1, t2 with s!T

i t1, s!T
i t2

such that M

⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�. If s = t1 or s = t2, g(s)!⇤
i g(t1) or

g(s)!⇤
i g(t2) holds trivially since m

⇤ is a reflexive model.
If s 6 = t1 and s 6 = t2, we know that before we do the transitive closure, there

is a path P =< s, i, v1, i, v2, i, ..., i, vk, i, t1 > from s to t1 where every adjacent
nodes in it are in the adjacent layers in T. let vi and vi+1 are arbitrary adjacent
nodes in P. If vi2Ti and vi+12Ti+1, then (vi!T

i vi+1)2R⇤
t . By the definition of

the pseudo-model, we have g(vi)!⇤
i g(vi+1).

If vi2Ti and vi+12Ti�1, then (vi!T
i vi+1)2R⇤

t rs. That means (vi+1!T
i vi)2R⇤

t .
By the definition of the pseudo-model, we have g(vi+1)!⇤

i g(vi). Since {!⇤
i } is

symmetric, we have g(vi)!⇤
i g(vi+1).

According to above, there is a path W =< g(s), i, g(v1), i, g(vi+1), i, ..., i, g(vi+k), i, g(t1) >
from g(s) to g(t1). By the transitivity of the {!⇤

i }, we have g(s)!⇤
i g(t1). By the

Inductive hypothesis, we also have M

⇤
, g(t1)|=⇤

�. Similarly, as for t2, we can
get there is g(s)!⇤

i g(t2) and M

⇤
, g(t2)|=⇤¬�. Thus we have M

⇤
, g(s) 6|=⇤4i�.

(!) The case is just same to the case in the proof of Proposition 2.

5.3 A real S5-model

The proof of completeness is di↵erent from the former because it is involved in
many properties of relations, such as reflexive, transitive.

Definition 14. Let M = hT, {!i|i2A}, V T i. We set w!+
i v if w!Dv in M

⇤
T

for each i2A. Let !i| = the transitive closure of !T
i [!

+
i for any i2A.

Because!T
i and!D are reflexive and symmetric, it’s easy to see that {!i|i2A}

is also reflexive and symmetric. That means {!i|i2A} is a equivalence relation.
So M is a S5-model. We need to show that:

Proposition 5. For any  2�, there is M, s|= i↵ M

⇤
t , s|=

⇤
 .

Proof: Induction on  . We just consider the nontrivial case.
Case 1: If  = 4i�:
(!) Assume M⇤

T , s 6|=
⇤4i�. Thus, there are t1 and t2 with s!T

i t1 and s!T
i t2,

such that M

⇤
t , t1|=

⇤
� and M

⇤
t , t2|=

⇤¬�. By IH, M, t1|=� and M, t2|=¬�, since
!T

i ✓!i. So we get M, s 6|=4i�.
( ) Assume M⇤

T , s|=
⇤4i�, if and only if for all t with s!T

i t,such that M⇤
T , t|=

⇤
�

or for all t with s!T
i t,such that M⇤

T , t|=
⇤¬�. To show M, s|=4i�, we must show

for all t with s!it such that M, t|=� or for all t with s!it such that M, t|=¬�.



Now assume that for all t with s!T
i t, M

⇤
T , t|=

⇤
�. Since !i is the transitive

closure of !T
i [!

+
i , there are v1...vk2T such that:

(1)v1 = s,
(2)vk = t,
(3)either (vj , vj+1)2!T

i or (vj , vj+1)2!+
i , for ijk.

Firstly, we can show that no matter how long the path is, there is M⇤
T , t|=4i�.

We now show by induction on the length of the path k. The case k=1(that is
s=t) is M⇤

T , s|=
⇤4i�, which holds trivially. Assume the case when k=n, M⇤

T , vn|=
⇤4i�(1jk�

1). It follows that M

⇤
T , vn|=

⇤4i4i� by (44). If k=n+1, we have to show that
M

⇤
T , vn+1|=⇤4i�. We should consider (3):
In the first case where vn!T

i vn+1, for all vn+1 with vn!T
i vn+1, there is

M

⇤
T , vn+1|=⇤4i� or for all vn+1 with vn!T

i vn+1, there is M

⇤
T , vn+1|=⇤¬4i�.

But M⇤
T , vn+1|=⇤¬4i� is impossible because if it holds, there would be t1, t2 with

vn+1!T
i t1 and vn+1!T

i t2, such that M

⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�. But {!T
i }

is transitive. So there are vn!T
i t1 and vn!T

i t2, we would get M⇤
t , vn|=

⇤¬4i�,
contradiction. So M

⇤
T , vn+1|=⇤4i�.

In the second case where vn!+
i vn+1, by axiom(4i�!D

4
�), there is M⇤

T , vn|=
⇤4i4i�!D

44i�

by Rule(Sub)(Sub is admissible in DNCL). So M

⇤
t , vn|=

⇤
D

44i�. According to
the definition of!+

i , there is vn!Dvn+1 in M

⇤
T . So for all vn+1 with vn!Dvn+1,

there is M⇤
T , vn+1|=⇤4i� or for all vn+1 with vn!Dvn+1, there is M⇤

T , vn+1|=⇤¬4i�.
Prove it by contradiction. If for all vn+1 with vn!Dvn+1, there is M⇤

T , vn+1|=⇤¬4i�.
According to the definition of!D, vn!Dvn+1 i↵ there exists � such that 1.¬D4

�2vn,
2.¬4i�2vn+1 implies ¬(D4¬4i�^D4(�!¬4i�))2vn. Since D4¬4i�$D

44i�,
D

44i�2vn implies ¬D44i� 62vn according to the definition of maximal consis-
tent sets. And since M

⇤
T , vn+1|=⇤

(�!¬4i�) for all vn+1 with vn!Dvn+1, there
is M

⇤
T , vn|=

⇤
D

4(�!¬4i�). So ¬D4(�!¬4i�) 62vn. This contradicts to 2. So
for all vn+1 with vn!Dvn+1, we have M

⇤
T , vn+1|=⇤4i�.

Secondly, we can should show that no matter how long the path is, there is
M

⇤
T , t|=

⇤
�. Do induction on the length k of the path.

If k=1, there is s!T
i since !T

i is reflexive. And we have assumed that for
all t with s!T

i t, M
⇤
T , t|=

⇤
�. Thus we have M

⇤
T , s|=

⇤
�.

The inductive hypothesis is that when k=n, there is M

⇤
T , s|=

⇤
�.

If k=n+1,
In the first case where vnto

T
i vn+1, we have known that M

⇤
T , vn|=

⇤
� and

M

⇤
T , vn|=

⇤4i�. Since !T
i is reflexive, we could know that for all u with vn!T

i u,
there is M

⇤
T , u|=�.

In the second case where vn!+
i vn+1, we have known that M⇤

T , vn|=
⇤4i� and

the axiom 4i�!D

4
�. Thus we have M

⇤
T , vn|=D

4
�. Because !D is reflexive

and vn!Dt, there is M

⇤
, t|=�.

This completes the induction. Now we have proved that for all t with s!t in
M, there is M, t|=�. Thus M, s|=4i�. Assume M

⇤
T , u|=

⇤
�, there is M, s|=4i�

similarly.
Case 2: If  = D

4
�:

(!) Assume M

⇤
T , s 6|=

⇤
D

4
�. Thus, there are t1 and t2 with s!Dt1 and

s!Dt2, such that M⇤
T , t1|=

⇤
� and M

⇤
T , t2|=

⇤¬�. By IH, M, t1|=� and M, t2|=¬�,



since s!Dt1 and s!Dt2, according to the definition of !+
i , there are s!it1 and

s!it1 for all i2A. So we get M, s 6|=D

4
�.

( ) Assume now that M, s 6|=D

4
�. Thus, there are states t1, t22Twith s!it1,

s!it2 for each i2A, such that M, t1|=� and M, t2|=¬�. By IH, M⇤
T , t1|=

⇤
� and

M

⇤
T , t2|=

⇤¬�. Since s!it1, there is a reduced path P1 = hvl,↵, vl+1,↵...,↵, vl+ki
where vl = s, vl+k = t1 and ↵ is i or D

4, for some i2A. The reduced paths are
a kind of paths where every adjacent nodes are in the adjacent layers. Now I will
show that for any j2A, P1 is also a path for them from s to t1.

Suppose there is another reduced path P2 = hvl,�, vl+1,�...,�, vl+ki where
vl = s, vl+k = t1 and � is j(j 6 = i) or D

4, for some j2A. Since P1 and P2 have
the same beginning node and the ending node and M

⇤
T is tree-like, any node in

M

⇤
T can’t have two di↵erent successors in the adjacent higher layer. Prove it by

contradiction. If P1 = P2, that means there is at least one node in P2 has two
successors in the adjacent higher layer. Thus we have to say P2 6 = P1 and ↵

is !T
D. By transitivity of {!T

i |i2A}, we have s!T
Dt1 and s!T

Dt2. So we have
M

⇤
T , s 6|=D

4
�.

So we proved the proposition.

Theorem 2. The logic DNCLS5 is complete with respect to the class S5 of all
frames.
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