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Abstract. The classical distributed knowledge is based on the tradi-
tional understanding of ’knowing that something’, but there may be
some differences considering other kind of ’knowing’. Apart form 'know-
ing that’, the concept of ’knowing whether’, ’knowing how’ and ’knowing
why’ have been put forward for some time and relevant work is ongoing.
In this paper, we try to study the distributed knowledge on ’knowing
whether’, expecting to find some differences compared with the classical
one.
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1 Introduction

The concept of distributed knowledge was originally put forward in the field
of computer science when discussing the distributed system. Generally, the dis-
tributed knowledge is characterized by intersection of information states. Surely
the information of different agents is presented in the way of '’knowing that’, clas-
sically. However, '’knowing whether’ is something new put forward these years by
Prof. Wang. We've found there are some special features which 'knowing that’
does not have. Thus, this inspires us to consider the combination of these two
concept. That means talking about the distributed knowledge in a new view-
point.

1.1 Classical distributed knowledge

Given a set of agents A, and a set of propositional variable P, the language L”
of epistemic logic with distributed knowledge is given by following definition:

P:=p| oAV | 29 |Kig | Do
where peP, i€ A.

Definition 1. The definitions of satisfaction of sentences of L in a model M
are as usual for the atomic formulas and the Boolean formulas. Now we just
consider the nontrivial cases:

M, wEK;¢ iff for all v such that w—;v: M, vEg (1)
M, wED¢ if f for all v such that w—v for each i€A: M,vE=d (2)



As we have seen, the semantic definition of the K;¢ is just like the classical modal
operator. And the semantic of the D¢ is the intersection of the information from
every agent i€A.

Based on the K;¢, classical logic about distributed knowledge gave its Axioms
System as follows:

Definition 2. Aziom System:

TAUT and all instances of tautologies (3)
KipNKi(o—1p) = K (4)

K¢+ D¢p when A = {i} (5)
K;¢—Dé (6)
D(¢—¢)ND¢—Dyp (7)
MP:¢,¢ =9 [Y (®)

NEC : from ¢ infer K;¢ (9)

Having introduced the traditional definition of the distributed knowledge, we
have to clarify another part of our work, namely epistemic logic about the "know-
ing whether’.

1.2 Knowing whether

The work on the ’knowing whether’ is based on the concept of noncontingency,
which means it is necessarily true or it is necessarily false. Intuitively, someone
knows whether ¢ means he definitely knows that ¢ is true or he definitely knows
¢ is false. This concept is often sufficient to express interesting propositions
without using the more expressive '’knowing that’ construction. Firstly, we should
introduce the semantics of the noncontingency operator:

Definition 3. The definition of the satisfaction of the sentences in form of /\;¢,
where /\;¢ means agent i knows whether ¢ intuitively.

M, s EN@iff for all ty,ts such that s—it1, s—ta, : (M, t; E¢ < Mty o)
(10)

More clearly, M,s EN;¢ if f M,s EK;¢ or M, sE=K;—¢

Actually it is quite different from ’knowing that’. Comparing the axioms of both

systems, K-axiom is not satisfied in NCL(the axiom system about ’knowing

whether’) in which two new fundamental axioms replace the role of K-axiom

played in traditional epistemic logic.

Definition 4. Aziom System for NCL:

TAUT and all instances of tautologies

N < D= (11)



(ACon) Ai(x — @) N Di(=x — @) = Dig (12)

(ADis) DNigp — Di(¢ = 1) V Di(=¢ — x) (13)
MP:¢g,¢ =4 /¢

NEC: from ¢ infer N (14)

REA: from ¢ <> 1 infer NNt (15)

In NCL, (ACon) and (ADis) are the fundamental axioms in this proof system.
Moreover, here is no SUB-rule. Since the proof of SUB is in use of K-axiom which
is lacking in NCL, SUB can’t be given directly. But adding the rule REA, SUB
is admissible in NCL.

As we have mentioned above, distributed knowledge is based on the most
fundamental epistemic logic. However, NCL is not a normal modal logic, which
forces us to reconstruct the system about distributed knowledge on "knowing
whether’.

2 Syntax and Semantics of DNCL

In this section, we first define a logical language including noncontingency and
distribution operators.

Definition 5. Let a set P of propositional variables and a finite set A of agents
i. The logical language of DNCL is defined as:

pu=T|p| ¢ | oA | Li¢| D¢ (16)

We use the operator D> to refer to the distributed knowledge on ‘knowing
whether’ which differs from the classical one, D.

Given the language, we will define the model and semantics in a standard way.

2.1 Models and semantics

Before we give the definition of semantics, we should clarify the models we would
use in following part.

Definition 6. A model is triple M = (S, {—;|[i€A}, V) where S is a nonempty
set of possible worlds, —; is a binary relation over S for each i€A, and V is a
valuation function assigning a set of worlds V (p)C S to each peP. Given a world
S€S, the pair (M,s) is a pointed model. A frame is a pair F = (S, {—;|i€A}),
just equals to the model without a valuation.

Now we will give the first important definition, semantics.



Definition 7. Given a model M = (S,{—;[i€A}, V), the semantics of DNCL
is defined as follows:
M,s ET always
M,s Epiff s€V(p)
M,s == if f not M,s =¢
M,s EN;Qiff for all t1,ta such that s—t1, s—ita, + (M, t1 =¢ < M, ts E¢)
M,s =D?¢ iff for all t such that s—it for each i, it holds thatM,t |=¢
or for all t such that s—;t for each i, it holds that Mt =—¢ (17)

Considering the satisfaction condition of D?¢, it also describes the intersection
of information from all agents. But once each agent has the same value of ¢,
we can conclude that ’knowing whether ¢’ is the distributed knowledge over the
group A.

If we realize the features of 'knowing whether’ and the new distributed knowl-
edge, we will construct the axiom system in a new way. And the main idea
depends on NCL.

2.2 Axiomatization

In this section we give a complete Hilbert-style proof system for the logic DNCL
on the class of all frames.

Definition 8. The proof system DNCL consists of the following axiom schemas
and inference rules:

TAUT and all instances of tautologies
Aig < D=
(ACon) DNi(x — &) AN Di(—x = @) = Do
(ADis) D¢ — Di(¢ = ) V Di(=¢ = X)

Ni¢p < D®¢p when A = {i} (18)

Aip — D*¢ (19)

(D%Con) D®(x — ¢) A D®(=x — ¢) — D®¢ (20)
(D?Dis) D®¢ — D®(¢ — ) V D®(=¢ — X) (21)

MP:¢,p =4 [
NEC : from ¢ infer N;¢
RENA : from ¢ < ¢ infer NipDN
RED® : from ¢ <> ¢ infer D> gD (22)

A derivation of DNCL is a finite sequence of DNCL-formulas such that each
formulas is either the instaniation of an axiom or the result of applying an
inference rule to prior formulas in the sequence. A formula is p€Th(DNCL) is
called provable, or a theorem, notation F¢, if it occurs in a derivation of DNCL.



We can see that in this axiom system, it remains the basic axioms and rules
from NCL. Besides, we add some new axioms with the operator D while in the
same form with (ACon), (ADis) and REA, namely (D*Con), (D* Dis) and
RED*.

Please pay much attention to the axiom(19) because it constructs a bridge
between the operator A and D, which is quite useful in the proof of Complete-
ness. Then we should show the soundness of DNCL.

Proposition 1. The proof system DNCL is sound with respect to the class of
all frames.

Proof: Actually we just need to prove the soundness of the azioms(18), (19),
(20), (21) and the rule(22). Because other azioms and rules have been proved
in Prof.Wang’s paper on ’knowing whether’. Among these azxioms, the proof
of (D®Con), (D®Dis) and RED® are just similar to the proof of (ACon),
(ADis) and REA. We just consider the case where s—;t for each i€ A instead
of s—t for some i€A.

Obviously, (18) sound. Because if there is only one agent in A, the distributed
knowledge is just same to the single agent’s knowledge. The intersection of in-
formation is just equals to the set of information of the agent i.

As for aziom(19), let M,SEN;¢, if and only if for all t with s—;t, such
that M,tl=¢ or for all t with s—;t, such that M, t=—¢. If there is no u with
s—iu for each i€ A, then M, SE=D*¢ holds trivially. If there is u with s—;u for
each i€ A, then there must be M, ul=¢ or M,ul=—¢ since s—;u. Thus, we have
M,S=D%¢.

Therefore we have proved the soundness of DNCL.

3 Completeness to the Class of K-frames

In this section, we are going to prove the completeness of DNCL. Generally,
the proof of completeness is complicated and logicians have developed a whole
processes of the proof on completeness of modal logic. The most standard method
is to use the ’canonical model’. However the classical way can not be taken
immediately due to the characteristics of the operator D?.

Actually we will take a method put forward by Fagin et al. (1992) given
for DS5 which is effective in dealing with the problems arose by the operator.
It’s main idea is introducing a new ’kit’, named ’pseudo-models’. Briefly, we
will show that DNCL is ’pseudo-satisfied’ in 'pseudo-model’. And then we can
transform the pseudo-model into a real one to prove that DNCL can also be
satisfied in the real model in help with the 'pseudo-satisfied’.

Now, I will show the proof in detailed.

3.1 Construct the pseudo-model

The main idea of the pseudo-model is just regard the operator D as a new
common operator, same to A;. So we use a new relation —p to refer to the
accessibility in the pseudo-model.



Definition 9. Let M* = (S, {—=I|i€cA}, —p,V) is a pseudo-model, in which
S = {s|s is a maximal set of DNCL}

s1—7sq if f there exists x such that
1. =A;x€s1 and
2. for all ¢: DN;dADN;(x — d)ESy, implies PpEsy
s1—>pss if f there exists x such that
1. ~D?xé€s; and
2. for all ¢: DPPAD> (x — ¢)€sy, implies pEsy
V(p) = {seSlpes}

The new satisfaction is 'pseudo-satisfy’: M*,s="¢ is just as ordinary in Kripke

models except that M*, si="D* ¢ iff for all t with s—pt, M* ,t="¢ or M*  t="—¢.

Clearly, —p is just same to the =} and from the definition of pseudo-satisfaction,
D? is same to —;. In a standard way, we would prove the truth lemma in the
following.

Lemma 1. Truth Lemma*: M*,sE="¢ iff ¢€s for all pcLP

Proof: Induction on ¢. The nontrivial cases are when ¢ = N;p and when
¢ = D®1. But we have regarded D> as /\;, so we can just prove the second
case in the absolutely same way as the first case. Since Prof. Wang has proved it
in his paper, we just need to refer to that proof.

3.2 A tree-like model

We have proved that DNCL can be satisfied in M*. Before we transform it into
a real model, we should firstly change it into a tree-like model which would make
it convenient to obtain the real model from it.

The method of constructing a tree-like model put forward by Fagin is proper
for any model, of course for the pseudo-model. 1 will sketch the method here:

The approach is to create the states of the tree-like model M7 from the
original model M*. The states in M7 is at various ’level’. The first level T}
contains precisely S, the set of states of M*. Assume inductively that we have
defined the set T}, of states at level k. Then, for each s€S, each veT}, and each
agent i, we define a new, distinct state zs , ;. We may refer to zs,; as an i-child
of v, and to v as the parent of z,, ;. Let T = U{T}|k>1}. Define g:T—S by
letting g(s)=s if s€T1, and g(zs,v:)=s for z,, €T} where k>2. Intuitively, we
shall construct M7 with state space T such that the set of formulas ¢ on s€T’
is same to that on the state g(s)€S.

And then we define the relations in M. Let s—7¢ iff t is an i-child of s and
g(s)=7g(¢). Define VT'(s) = V(g(s)).

Now we obtain the tree-like model M3 = (T,{—T]icA},VT) from the
pseudo-model M*. We will show that the set of formulas ¢ on s€T is same
to that on the state g(s)€S.



Proposition 2. MZ, sE="y iff M*, g(s)E"v

Proof: Induction on 1. Considering that the case when ¥ = ;¢ is same to
the case when 1 = D®¢. So we can just prove the nontrivial case when 1 = ;.

(+) Assume first that M3, sE="not N;¢. Thus there are t; and ts with
s—Tty and s—7Tta, such that M3, t1E="¢ and M3, ta="~¢. According to the
definition of —7T, there are g(s)—:g(t1) and g(s)—7g(t2). By inductive hypothe-
sis(abbreviate it to IH in the followings), M*, g(t1)E="¢ and M*, g(ts)E="=¢. So
we get M, g(s)i" it

(=) Assume that M*, g(s)E"not A;¢. Thus there are wy and we with g(s)—Fw;
and g(s)—Fwa, such that M*, w1E="¢ and M*, wa="~¢. According to the defi-
nition of the state space T, there must be zy, s; and zy, s, With s—)iTzwl,S’i and
s 20y 5o By IH, M, 2, s i =" ¢ and M, 2y, s i =" 0. So we get Mz, siE"nl\;¢.

We have proved it as desired.

We have constructed a tree-like model from the pseudo-model and actually they
have the same set of formulas @ on corresponding states. However, M7 is also
a pseudo-model. Thus, the remaining work we have to do is transforming the
tree-like model into a real model.

3.3 Construct the real model

The key process to construct the real model is to reconstruct the relations in the
tree-like model M7. And the state space and the valuation inherited from M7
directly.

Definition 10. Let M = (T,{—;|ic A}, VT). We set w—; v if w—pv in M3
for each i€A. Let —; = —=TU—T for any icA.

Because M and M7 has the same state space T, we should show that the
set of formulas @ satisfied in M is exactly the set of formulas pseudo-satisfied in

Proposition 3. For any ¢€®, there is M, sE=1 iff M, sE".

Proof: Induction on . If ¢ is a propositional variable or Boolean formula,
it’s immediate. We just consider the nontrivial case.

Case 1: If v = N;op:

(=) Assume Mz, sE="not /;¢. Thus, there are t1 and ty with s—Tt, and
s—Tty, such that M}, t1="¢ and M3, tal="~¢. By IH, M, t1|=¢ and M, ts|=—¢,
since {—T}C{—;|i€A}. So we get M, s=not 2.

(<) Assume M3, sE="1\;¢, if and only if for all t with s—Tt,such that M3, t="¢
or for all t with s—t,such that M}, tE"=¢. To show M,sE=/N;¢, we must
show for all t with s—;t such that M,tl=¢ or for all t with s—;t such that
M, tl=—¢. We assume here that s—I1t such that M}, t="¢. Here are 2 cases
when s—it = s—1t or s—u = s—>i+u. If s—it = s—Tt, M3 t="¢. By IH,
M, t=¢. If s—;u = s—;u, that means s—pu in M. Since M, sk="1¢, ac-
cording to the aziom(Nip—D>¢), My, sE="D>¢. Now we want to show that
M, u="¢. Because s—pu in M}, according to definition of —p, we know there



exists x such that ~D®x€s. We prove by contradiction. Assume Mi, uE="—9,
by truth lemma, ~¢p€u. Since ¢p€t, we have x—¢€t for all t with s—;t. So we
have Ni(x—@)€Es. By Aziom, D> (x—¢)€s. Similarly, since ~¢cu, we have
X——¢€u for all u with s—pu. So we have D> (x——¢)€s. By Aziom(D*con),
D (=¢p——x)AD*(¢——x)— D> =x. So we have D> —x€s. That means D>xEs,
which contradicts to ~D*x€s. So M;,u="¢. By IH, M,ul=¢. So for all t with
s—t, there is M, t=¢

Assume for all t s—Tt such that M, tl=—¢ is similar. So for all t with s—;t
, there is M, tl=¢ or for all t with s—;t , there is M, tE=—¢.

Therefore we get M, slE=0;¢.

Case 2: If » = D®¢:

(=) Assume M, s="not D®¢. Thus, there are t; and ty with s—pt1 and
s—pta, such that M3, t1="¢ and M}, to="=¢. By IH, M, t1=¢ and M, ta|=—¢,
since s—pty1 and s— pta, according to the definition of {%j‘}, there are s—;t1
and s— ity for all i€A. So we get M, sED¢.

(<) Assume M,sED>¢. Thus, there are t1 and ty with s—it1 and s—to
for each i€ A, such that M,t1=¢ and M, ta=—¢. According to the definition of
{—:} and M3 is tree-like, we get to know that s—pt1 and s—pte in My. By
IH, there are Mj, t1E"¢ and M, ta="~¢.

So we have M3, siE=" D> ¢.

Now we have proved the proposition we want.

Theorem 1. The logic DNCL is complete with respect to the class K of all
frames.

4 Axiomatization: Extension

We have proved the completeness to the class of K-frames above all. As we all
know that generally, the epistemic logic on S5-frames would properly describe
the knowledge of different agents. So we have to extend our axiom system, say
DNCL, to DNCLS5.

As the general way, we add some axioms to DNCL. Because our concept
of distributed knowledge is based on ’knowing whether’, so we should add the
axioms from NCLS5 and construct some new axioms with the operator D® in
the same form of these new adding axioms from NCLS5.

Definition 11. DNCLSY is obtained by adding following axioms:

(AT) DidNDi(9=Y)Ap—= Dy (23)
(WAB) “Ajth— D= (24)
(DT) D2¢AD® (¢—¢)Ad—D> (25)
(wD5) ~D*p—D>-~D>¢ (26)



The proof of the soundness of (DT) and (wD5) is similar to that of (AT) and
(wA5) which have been given by Prof.Wang in his former work.

Here is something we should pay attention that the formula(A4), say A;¢o— A A0,
can be implied by DNCLS5, which is useful in following proof. In the next sec-
tion, we shall prove the completeness of DNCLS5.

5 Completeness to the Class of S5-frames

Having the experience in former proof of completeness to K, we can just walk
along the process to give the the proof of completeness of DNCLS5.

5.1 A S5-pseudo-model

Similar to the way to construction above, we can construct the new S5-pseudo-
model M* just through adjusting the definition of relations, to let it be a equiv-
alence relation.

Definition 12. We use the former symbols. Let a S5-pseudo-model M* = (S, {—=F|i€cA}, —»p,V),
where:

s1—; 52 is the reflexive closure of the relations defined in DNCL.

s1—pss 18 the reflexive closure of the relations defined in DNCL.
And the pseudo-satisfaction is defined as above.

And the truthlemma™ is the same in proof of DNCL.

But actually we just construct the pseudo-model here to be a reflexive model.
We should show that the {—}]i€ A} is Euclidean. Since in a pseudo-model, we
regard D® as /\;, so the proof is absolutely same to the proof given by Prof.Wang
in his paper.

5.2 A S5-tree-like pseudo-model

The method to change M™ into the tree-like model M7 is almost same to it
mentioned above. But there still be something different here, that is also about
the relations.

Definition 13. We let M} = (T, {—=T]ic A}, VT) be the tree-like pseudo-model
again, where {—T|i€ A} is the reflexive, symmetric and transitive closure of the
relations we defined above in DNCL. Here much notice we should must put in.
We firstly transform the pseudo-model into the tree-like pseudo-model named
M. Then we do the reflexive closure of M; which forms a new model M, =<
T,R;,, VT >. Then we do the symmetric closure of M;,. which forms the model
M. =< T,R};,,,VT >. At the last, we do the transitive closure of M}., and

make it into My. The state space and the valuation are the same as above.
It’s easy to see that this tree-like pseudo-model M7 is a S5-model.



And the proof of M3, sE="¢ iff M*, g(s)E"1 is different from the above one.
Because we have added more relations in the tree-like model.

Proposition 4. M}, sE="y iff M*, g(s)E"

proof: If v is a propositional variable, this follows from the fact that VT (s) =
V(g(s)). The case where v is a Boolean formula is immediate. We now just
consider the nontrivial case when ¢ = N;¢.(The case when 1 = D"¢ is the
same)

(+)Assume first that M, sE="\;¢. Thus there are ty, to with s—1t1, s—1ty
such that M3 t1E="¢ and M}, toE"=¢. If s = t1 or s = ta, g(s)—Fg(t1) or
g(8)—7Fg(ta) holds trivially since m* is a reflexive model.

If s = t1 and s & to, we know that before we do the transitive closure, there
s a path P =< $,1,v1,%, V2,1, ...,%1, Uk, 1,11 > from s to t; where every adjacent
nodes in it are in the adjacent layers in T. let v; and v,41 are arbitrary adjacent
nodes in P. If v;€T; and vi41€Ti41, then (v;—Tvi11)ER}. By the definition of
the pseudo-model, we have g(v;)—1g(viy1).

Ifvi€T; and v; 1 €T;_1, then (vi—Tv;11)ER;rs. That means (viy1—1v;)ER].
By the definition of the pseudo-model, we have g(viy1)—7Fg(v;). Since {1} is
symmetric, we have g(v;)—Fg(vit1).

According to above, there is a path W =< g(s),1,9(v1),%, g(Vit1), 2, ooy &, g(Vigr), 4, g(t1) >
from g(s) to g(t1). By the transitivity of the {—7}, we have g(s)—Fg(t1). By the
Inductive hypothesis, we also have M*, g(t1)E="¢. Similarly, as for ta, we can
get there is g(s)—*g(ta) and M*, g(ta)="~¢. Thus we have M*, g(s)E"N;p.

(—) The case is just same to the case in the proof of Proposition 2.

5.3 A real S5-model

The proof of completeness is different from the former because it is involved in
many properties of relations, such as reflexive, transitive.

Definition 14. Let M = (T,{—;[ic A}, VT). We set w—; v if w—pv in M3
for each i€A. Let —;| = the transitive closure of —TU—T for anyi€A.

Because —7 and —p are reflexive and symmetric, it’s easy to see that {—;[i€ A}
is also reflexive and symmetric. That means {—;[i€ A} is a equivalence relation.
So M is a S5-model. We need to show that:

Proposition 5. For any Ye®, there is M, si=1 iff M}, sE=".

Proof: Induction on ¥. We just consider the nontrivial case.

Case 1: If v = N;op:

(=) Assume M}, sE="N;¢. Thus, there are t; and ty with s—1t; and s—Tt,
such that M}, ti="¢ and M} to="=¢. By IH, M,t1|=¢ and M, ty=—¢, since
—TC—,. So we get M, sl .

(=) Assume M3, sE="1\;¢, if and only if for all t with s—Tt,such that M3, tE="¢
or for all t with s—T't,such that M, tE="=¢. To show M, si=A ¢, we must show
for all t with s—;t such that M, tl=¢ or for all t with s—;t such that M, tE=—¢.



Now assume that for all t with s—Tt, Mi, tE"¢. Since —; is the transitive
closure of %iTU%j', there are vy...v, €T such that:

(1), = s,

(2)vy, =t,

(3)either (vj,vji1)E—T or (v;,vj41)E—, for i<j<k.

Firstly, we can show that no matter how long the path is, there is My, t=/\;¢.

We now show by induction on the length of the path k. The case k=1(that is
s=t) is M3, sE="/\;¢, which holds trivially. Assume the case when k=n, M}, v, =" N p(1<j<k—
1). It follows that Mi,v,="NiNig by (A4). If k=n+1, we have to show that
M v E"Nip. We should consider (3):

In the first case where vn—>?vn+1, for all v,41 with vn—ﬁvn“, there s
Mi v 1 E D¢ or for all vyp1 with v, —T v,q1, there is M vy E =0,
But M7, vp41 E"=/\;¢ is impossible because if it holds, there would be ty, t with
Vni1—1t1 and v, 1 —1ts, such that M t1E"¢ and Mi,to="—¢. But {—=T}
is transitive. So there are fun%iTtl and vn%iTtg, we would get Mt*,vn|:*—|Ai¢,
contradiction. So M}, v 1" Ni¢.

In the second case where vn—ﬁvnﬂ, by amiom(Ai¢—>DA¢), there is M7, Un)Z*AiAi¢—>DAAi¢
by Rule(Sub)(Sub is admissible in DNCL). So M}, v,|="D*/\;¢. According to
the definition 0f—>;”, there is v, — pUp41 0 M7, So for all v, 11 with v,— pUpy1,
there is M3, vy 1 =" D¢ or for all vy, 11 with v,— pvyy1, there is M, vy 1= 0.
Prove it by contradiction. If for all v, 41 with v,— pvpt1, there is M7, vpy1 = =N
According to the definition of —p, vn— pUny1 iff there exists x such that 1.~D*xEv,,
2.20;p€v, 11 implies (D> =0 ;pAD? (x——00))Evy,. Since D2 ¢ D> N,
D2 Njpev,, implies D> N\;pdv, according to the definition of mazimal consis-
tent sets. And since M3, vy 41" (x—=—0:¢) for all v, 11 with v,—pv,41, there
is M2, v, =" D (x—=—A0i¢). So ~D>(x——0i¢)&v,. This contradicts to 2. So
for all vy 1 with v,— pvp41, we have M7, vy E N

Secondly, we can should show that no matter how long the path is, there is
M;, tE="¢. Do induction on the length k of the path.

If k=1, there is s—I since —T is reflevive. And we have assumed that for
all t with s—Tt, M, tE="¢. Thus we have M}, sE=" 6.

The inductive hypothesis is that when k=n, there is M}, sE"¢.

If k=n+1,

In the first case where vntoiTvnH, we have known that Mj’i,vn|:*¢ and
Mi v, E" N, Since —T is reflezive, we could know that for all u with v,—T u,
there is My, u=¢.

In the second case where vn—ﬁvnﬂ, we have known that M4, v, =" \;¢ and
the aziom N;¢p—D>¢. Thus we have M;,UR'ZDAd). Because —p is reflexive
and v,—pt, there is M* t=¢.

This completes the induction. Now we have proved that for all t with s—t in
M, there is M,t=¢. Thus M, sEN¢. Assume M3, uE="¢, there is M, sE=N¢
similarly.

Case 2: If » = D% ¢:

(=) Assume My, sE" D®¢. Thus, there are t1 and ty with s—pt; and
s—pta, such that M3, t1="¢ and M}, tos="=¢. By IH, M, t1=¢ and M, ta=—¢,



since s— pt1 and s— pta, according to the definition of —>j', there are s—;t1 and
s—it1 for all i€A. So we get M, sf=D>¢.

(<) Assume now that M, sl=D>¢. Thus, there are states t1, to€Twith s—t1,
s—sita for each i€A, such that M,t1l=¢ and M, tal=—¢. By IH, M}, t1E="¢ and
M, taE"=. Since s—tq, there is a reduced path Py = (), @, V41, ey O U4k )
where v; = 5, Vi = t1 and « is i or D>, for some i€ A. The reduced paths are
a kind of paths where every adjacent nodes are in the adjacent layers. Now I will
show that for any jEA, Py is also a path for them from s to ty.

Suppose there is another reduced path Py = (v, B,vi41,B..., B, Vit+r) where
v =8, vrp =t and B is j(j £ i) or D?, for some jEA. Since Py and Py have
the same beginning node and the ending node and M7 is tree-like, any node in
M7 can’t have two different successors in the adjacent higher layer. Prove it by
contradiction. If Py = P, that means there is at least one node in Py has two
successors in the adjacent higher layer. Thus we have to say Py /= P and «
is —71,. By transitivity of {—T|i€ A}, we have s—ht; and s—hts. So we have
Mz, sED ¢

So we proved the proposition.

Theorem 2. The logic DNCLSS5 is complete with respect to the class S5 of all
frames.
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